A General Framework for Bounds for Higher-Dimensional Orthogonal Packing Problems
نویسندگان
چکیده
منابع مشابه
A General Framework for Bounds for Higher-Dimensional Orthogonal Packing Problems
Higher-dimensional orthogonal packing problems have a wide range of practical applications, including packing, cutting, and scheduling. In the context of a branch-and-bound framework for solving these packing problems to optimality, it is of crucial importance to have good and easy bounds for an optimal solution. Previous e orts have produced a number of special classes of such bounds. Unfortun...
متن کاملLower-Dimensional Bounds and a New Model for Higher-Dimensional Orthogonal Packing
Consider the feasibility problem in higher-dimensional orthogonal packing. Given a set I of d-dimensional rectangles, we need to decide whether a feasible packing in a d-dimensional rectangular container is possible. No item rotation is allowed and item edges are parallel to the coordinate axes. Typically, solution methods employ some bounds to facilitate the decision. Various bounds are known,...
متن کاملOne-dimensional relaxations and LP bounds for orthogonal packing
We consider the feasibility problem in d-dimensional orthogonal packing (d ≥ 2), called Orthogonal Packing Problem (OPP): given a set of ddimensional rectangular items, decide whether all of them can be orthogonally packed in the given rectangular container without item rotation. We review two kinds of 1D relaxations of OPP. The first kind is non-preemptive cumulative-resource scheduling, equiv...
متن کاملAn Exact Algorithm for Higher-Dimensional Orthogonal Packing
Higher-dimensional orthogonal packing problems have a wide range of practical applications, including packing, cutting, and scheduling. Combining the use of our data structure for characterizing feasible packings with our new classes of lower bounds, and other heuristics, we develop a two-level tree search algorithm for solving higher-dimensional packing problems to optimality. Computational re...
متن کاملConsecutive ones matrices for multi-dimensional orthogonal packing problems
The multi-dimensional orthogonal packing problem (OPP) is a well studied optimization problem [3,9]. Given a set of items with rectangular shapes, the problem is to decide whether there is a non-overlapping packing of these items in a rectangular bin. Rotation of items is not allowed. Fekete and Schepers introduced a tuple of interval graphs as data structures to store a feasible packing, and g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Methods of Operational Research
سال: 2004
ISSN: 1432-2994,1432-5217
DOI: 10.1007/s001860400376